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ABSTRACT 
 
This research work focuses on development of Artificial Neural Networks (ANNs) in prediction of compressive 
strength of concrete after 28 days. To predict the compressive strength of concrete six input parameters that are 
cement, water, silica fume, super plasticizer, fine aggregate and coarse aggregate are identified. A total of 639 
different data sets of concrete was collected from the technical literature. Training data sets comprises 400 data 
entries, and the remaining data entries (239) are divided between the validation and testing sets. Different 
combinations of layers, number of neurons, activation functions, different values for learning rate and 
momentum were considered and the results were validated using an independent validation data set.  A detailed 
study was carried out, considering two hidden layers for the architecture of neural network. The performance of 
the 6-12-6-1 architecture was the best possible architecture. The MSE for the training set was 5.33% for the 400 
training data points, 6.13% for the 100 verification data points and 6.02 % for the 139 testing data points. The 
results of the present investigation indicate that ANNs have strong potential as a feasible tool for predicting the 
compressive strength of concrete. 
 
Keywords: artificial neural networks (ANNs), back propagation (BP), compressive strength, mean squared 
error (MSE). 
 
 
INTRODUCTION 
 
Artificial neural networks (ANNs) are a family of massively parallel architectures that are capable of learning 
and generalizing from examples and experience to produce meaningful solutions to problems even when input 
data contain errors and are incomplete. This makes ANNs a powerful tool for solving some of the complicated 
engineering problems. Basically, the processing elements of a neural network are similar to the neuron in the 
brain, which consists of many simple computational elements arranged in layers. 
 
The basic strategy for developing a neural network-based model for material behavior is to train a neural 
network on the results of a series of experiments using that material. If the experimental results contain the 
relevant information about the material behavior, then the trained neural network will contain sufficient 
information about material’s behavior to qualify as a material model (Hakim, Mesri and Selaru) [1,2,3]. Such a 
trained neural network not only would be able to reproduce the experimental results, but also it would be able to 
approximate the results in other experiments through its generalization capability. 
 
A compressive strength of concrete is a major and important mechanical property, which is generally obtained 
by measuring concrete specimen after a standard curing of 28 days. Concrete strength is influenced by lots of 
factors. Some of these parameters include quality of aggregate, strength of cement, water content and water-to-
cement ratio. The traditional approach used in modeling the effects of these parameters on the compressive 
strength of concrete starts with an assumed form of analytical equation and is followed by a regression analysis 
using experimental data to determine unknown coefficients in the equation, Dias [4]. 
 
Unfortunately, rational and easy-to-use equations are not yet available in design codes to accurately predict the 
compressive strength of concrete. Also, the current empirical equations presented in the codes and standards for 
estimating compressive strength are based on tests of concrete without supplementary cementitious 
materials,Yeh, [5].The validity of these relationships for concrete with supplementary cementitious materials 
(fly ash, silica fume, super plasticizer, etc.) should be investigated.  
 
Guang and Zong, [6] proposed a method to predict 28-day compressive strength of concrete using multilayer 
feedforward neural networks. Dias ,[4] presented an artificial neural network model for predicting the strength 
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and slump of ready mixed concrete. Wang [7] developed an automatic knowledge acquisition system based on 
neural networks to design concrete mix. Application of neural networks for estimation of concrete strength was 
presented by Kim, [8].  
 
Eldin and Senouci, [9] employed a neural network for measuring and predicting of the strength of rubberized 
concrete. Employing the artificial neural network method in modeling of strength of high performance concrete 
is shown by Yeh, [5]. Hola [10] determined concrete compressive strength based on non-destructive tests using 
artificial neural network. Lee, [11] developed the intelligent prediction system of concrete strength that provides 
in-place, information on compressive strength of concrete. Mansour [12] applied the ANNs for predicting the 
shear strength of reinforced concrete beams. Lai [13] predicted the mechanical properties of concrete by ANNs. 
 
Predicting of compressive strength of concrete using ANNs is the aim of this study. For this aim, a computer 
program was developed in Qbasic.  Using this program, a neural network model can be constructed, trained and 
tested using the available test data of 639 different concrete mix-designs gathered from the technical literature. 
The data used in neural network model are arranged in a format of six input parameters that cover the cement, 
water, silica fume, super plasticizer, fine aggregate and coarse aggregate. The proposed neural network model 
predicts the compressive strength of concrete. 
 
 
DEVELOPMENT OF ANN FOR CONCRETE STRENGTH 
 
Data Selection 
 
In order to develop ANN architecture, 639 samples of concrete data on 28th day of compressive strength of 
concrete were collected. In the present work, training data set comprises 400 data entries, and the remaining data 
entries (239) are divided between the validation and testing sets. To test the reliability of the neural network 
model, 139 samples were randomly selected as the test set and 100 samples as the validation set. The dividing 
process was carried out randomly between the three sets and each dataset has been statistically examined to 
ensure that it covers the range of input parameters. 
 
These data was collected from laboratory of concrete of University Putra Malaysia , different papers, Dias [4], 
Yeh [5], Hola [10], Lee, [11], Lai [13], Hola [14] and Pala [15] and some from laboratory data by  
Kasperkiewicz and co-workers [16, 17] in institute of fundamental technology research of Poland. These data 
was collected for compressive strength of concrete after 28 days including weight per m3 of each concrete 
component. In a neural network if the area for data is more, learning is better. The accuracy of a neural network 
depends on the scattering of input information for training of the network. For this reason, classification of input 
information is very important in training. Therefore the input information is classified in six cases and in each 
case classification is based on one of the concrete components. The ranges of input parameters are in Table 1. 
 
Construction of Neural Network Model and Parameters 
 
The architecture of a network describes how many layers a network has, the number of neurons in each layer, 
each layer’s activation function, and how the layers connect to each other. The best architecture to use depends 
on the type of problem to be represented by the network Ince [18], Bazier [19]. Selecting an optimal ANN 
architecture is an open problem of investigation and depends on the application domain. In the present  study 
there are six inputs and compressive strength of concrete is output. For this reason, the initial structure of neural 
network is illustrated Figure 1.  
 
The architecture of neural network was determined by training, testing and validating of 25 networks having 
different conditions as tabulated in Table 2.  As it is seen in this table, several architecture of neural network 
models were examined by varying the number of hidden layers, number of neurons in each hidden layer, type of 
activation function, value of learning rate and value of momentum term.  
 
It is clear from Table 2 that each network has been trained with both one hidden layer and two hidden layers and 
it were shown significant difference in terms of accuracy and computational time required for learning. It is 
found that in ANN with two hidden layer, the time for computing reduced to arrive an error of 0.007.  It is 
obvious in columns 2 and 9 of Table 2, that ANN model with one hidden layer i.e., networks N1 to N4, MSE will 
be very high and in networks N5 to N10, MSE is smaller, but number of connectivity is too big and 
computational time is long, accordingly, the neural network did not give good generalization of the network, 
indicating that more neurons are required. For example in network N10, sixty hidden neuron for connecting of 



International Journal of Engineering and Technology, Vol. 4, No. 2, 2007, pp. 141-153 
 

 

ISSN 1823-1039 ©2007 FEIIC 

143

481 weights is needed. However, adding more neurons to the only one hidden layer produced over fitting of the 
network output. 
 
It is seen in columns 2, 7, 8 and 9 of Table 2, in architectures with two hidden layers MSE is less than when 
there is one hidden layer. However the iterations taken by one hidden layers networks were more than those by 
two hidden layer networks. This problem was finally overcome by introducing a second hidden layer with six 
neurons connected to the first hidden layer. Eventually, the back propagation in this study is restricted to two 
hidden layers, which yields a total of four layers. So, the networks N1 to N10 in Table 2 were not acceptable.  
Moreover it is clear from this table that in networks N17 to N25 error is small, but numbers of hidden neurons and 
number of iteration are too high. In these networks numbers of connectively are too much and computational are 
very complicated and take long computational time. For examples networks N17, N24 and N25 have 361, 851 and 
691 connectivity weights, respectively. To arrive to acceptable convergence number of iteration were recorded 
25000, 100000 and 70000, respectively. 
 
It can be seen in this table, which networks N11 to N16, have acceptable error with logical iterations and small 
hidden neurons. Table 2 shows that network N15 have the best possible architecture. In this network, after 10000 
iterations, the required convergence is arrived.  
 
The architecture of this network is 6-12-6-1, i.e. there are six neurons in the input layer corresponding to the six 
factors (six components of an input vector), two hidden layers that twelve in the first hidden layer and six 
neurons in the second hidden neurons and one neuron in the output layer corresponding to 28th day compressive 
strength. The final architecture for this network is presented in Figure 2. 

 
Training Phase 
 
Training of the neural network is carried out using 400 data sets. It is worth mentioning that in this study, the 
training process was terminated when any of the following conditions are satisfied: 
 
i) The maximum number of iterations is reached to 10000. 
ii) The mean square error of the training set is reached to 0.007. 
iii) The mean square error of the training data sets starts diverges after 5000 number   of iteration. 
 
One of the important variables in network design is the learning rate coefficient. Each time a pattern is presented 
to the network, the weights leading to a neuron are modified slightly during learning in the direction required to 
produce a smaller error at the outputs the next time the same pattern is presented. The amount of weight 
modification is proportional to the learning rate. The value of learning rate ranges between 0.0 and 1.0, where a 
value closer to 1 indicates significant modification in weight while a value closer to 0 indicates little 
modification Al-khaleefi, [20].  
 
However, the learning rate in a parameter that determines the size of the weights adjustment each time the 
weights are changed during training. Small values for the learning rate cause small weight changes and large 
values cause large changes. The best learning rate is not obvious. If the learning rate is 0.0, the network will not 
learn. The learning rate is very important in identifying over-learning and when to stop training Al-khaleefi [20]. 
 
In process of training, it was seen that for the range of (0.05-0.1) the learning rate, convergence was faster and 
number of iterations was less than other range. However, when the learning rate increased, the iterations number 
jumps to a divergence point and training doesn't converge even in 10000 training iterations. The effect of the 
learning rate on the total number of iterations and on the speed of convergence was examined.  
 
The ANN model trained against different values of learning rate. Each value has been given to the network and 
MSE value was determined. The results for learning rate are shown in Table 2.It is clear from Table 2 that to 
achieve low MSE when learning rate is in range (0.01-0.06), number of iterations increased drastically, which 
indicates the ANN model, is not computationally efficient. In this research work, also for learning rate value 
more than 0.2, network was unstable and has highly oscillations.   As it is obvious from Table 2 that learning 
rate in range of (0.06-0.08) has a minimum error and minimum number of iteration for convergence without any 
oscillation. Furthermore the value of 0.06 for learning rate has minimum error as compared of to learning rate 
0.07 and 0.08, but this difference is not significant.  Hence in this research, for avoiding any oscillation the best 
value for learning rate that have above conditions, is 0.08. Effect of different learning rates against MSE is 
plotted in Figure 3.  
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For preventing unstable and oscillation network, is added in back propagation algorithm a value that is called 
momentum. The momentum term adds inertia to the training procedure, and helps avoid oscillatory entrapment 
in local minima [20].In this present, the network first checked for range of (0.8-1) for momentum and was seen 
over oscillations and very big error under high momentum range. After that, under low momentums ranges (0.3-
0.5), with considering 0.07 for learning rate is needed to very long computational times. However, as it is clear 
in Table 2, rang (05-0.7) for momentum, give good results. Variations of MSE versus rates of momentum, is 
illustrated in Figure4. Based on the results tabulated in Table 2 and plotted via Figure 4, value for momentum 
rate is selected 0.65. It can be seen in this Figure that value of error in momentum rate of 0.6 is less than value 
of 0.65 for momentum, but this difference in error isn’t considerable. Hence, for preventing of oscillation, value 
of 0.65 is selected. 
 
The summary of the evaluation learning rate, momentum and number of iterations versus MSE are given in 
Table 3. It is obvious from this table that for the learning rate above 0.2, the ANN model is unstable. In 
summary, a learning factor equal to 0.08 and momentum rate equal to 0.65 was set for the training of the 
network.   An activation function is used for producing the neuron output and limiting the amplitude of the 
output of a neuron. It determines the relationship between inputs and outputs of a neuron and a network. In 
general, the activation function introduces a degree of nonlinearity that is valuable for most ANN applications 
Al-khaleefi [20]. Decision on activation function for layers is another important parameter. 
 
To arrive at optimum activation functions, the constructed ANN system executed with different activation 
functions. In this investigation, as shown in Table 4 the value of mean square error in the last of 500th epoch and 
10 times, is compared for sigmoid, tangent hyperbolic and linear activation functions. It is worth mentioning 
that in this present work, determination of activation function by keeping the sigmoid function in output layer 
and assumes different activation function for hidden layers. The result shows that on average, the sigmoid 
function performs better than the other two activation function.  
 
Sigmoid function on average reaches lower MSE rates than the other activation functions. For this reason the 
sigmoidal transfer function is implemented between the input and hidden layers and also is selected in output 
layer. Hence, with 0.08 and 0.65 for learning rate and momentum, respectively and selection of sigmoid 
activation function in hidden and output layers, the developed ANN is trained for the 400 sets of data the 
predicted values are compared. 
 
Figure 5 shows the comparison of compressive strength of concrete predicted by the developed ANN and that of 
actual compressive strength of concrete. It is obvious from this plot that there is a good agreement between the 
predicted and actual compressive strength of concrete. It was found that the forecasting error was 5.33% in 
10000 iterations for these particular trial runs. The results shown in this Figure are fairly reasonable, since both 
the test and validation set errors have very similar characteristics, and no significant over fitting has occurred. In 
the training process, weights and biases are constantly adjusted to minimize the error between the actual and the 
predicted outputs of the unit in the output layer. 
 
 
Testing Phase 
 
Next step after training process in the development of the ANN is to test the developed ANN model. After the 
network was trained in the 400 training cases, is used the testing set to avoid over-training and to evaluate the 
confidence in the performance of the trained network with a training set for a 10000 number of iterations. The 
testing process has been carried out for a total 139 data sets. Figure 6 exhibits the comparison between predicted 
compressive strength of concrete against the experimental evidence, which highlighted that there is a good 
agreement between the predicted values and that of experiment data. 
 
The results are shown that the artificial neural network was very successful in predicting of compressive 
strength of error with MSE of 6.02 percent. Also the ANN predicts the compressive strength of concrete in 
testing stage reasonably well the 6-12-6-1 neural models in general performs better than the others and it is able 
to give accurate prediction of compressive strength of concrete.   In testing, result showed that, bad output 
(compressive strength with big error) usually occurred form the bad data set in range (0-30). One explanation 
for these results could be that there is an insufficient amount of training data around this range. 
 
Validation Phase 
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The validation set is used to as a further check for the generalization of the Neural Network, but do not have any 
effect on the training. In the validation phase, the ANN accuracy is examined using the validation set.  
The plot of predicted compressive strength of concrete in validation sets (100) against experimental data 
depicted is shown in Figure7. It is obvious from this plot that is reasonably good agreement between the results 
predicted and target results. These results show that the artificial neural network was successful in training the 
relationship between the input and output data with the MSE of 6.13 Percent (MSE for validation set). 
 
Comparison of Training, Testing and Validation 
 
The progress of the training was checked by plotting the training, validation and test mean square error versus 
the performed number of iterations, as presented is shown in Figure 8.  The results in this Figure indicate that 
the neural network was successful in learning the relationship between the different input parameters and output 
(compressive strength).  

 
 
CONCLUSION 
 
In this study, a neural network model for prediction of compressive strength of concrete was developed. The 
study suggests that the use of neural networks has several significant advantages over other conventional 
methods. The following summarizes the findings of the study. 
 
(i) The performance of the 6-12-6-1 architecture was better than other architectures. That means, there are six 

neurons in the input layer corresponding to the six factors, two hidden layers that twelve in the first hidden 
layer and six neurons in the second hidden neurons and one neuron in the output layer corresponding to 
28th day compressive strength. 

(ii) The learning parameters as 0.08 and momentum parameter as 0.65 gave a best possible results for training 
of network. 

(iii) The MSE for the training set was 5.33% for the 400 training data points, 6.13 for the 100 verification data 
points and 6.02 % for the 139 testing data points. 

(iv) The results obtained from the developed computer program were compared with results from experimental 
studies. The comparisons of results indicate good agreements. From the results obtained artificial neural 
network, it can recognize the concrete in term of ‘strength’ with a confidence level of about 95%, which is 
considered as satisfactory from an engineering point of view. 
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Table1: Range of Input Parameters in database 
Input Parameters Minimum(MPa) Maximum(MPa) 

Cement 94 900 

Water 50 650 
Silica fume 0 300 

Super plasticizer 0 40 
Fine aggregate 0 1600 

Coarse aggregate 0 2000 

 
 

Table 2: Comparison between specifications of different architectures 

 
L.R=Learning Rate, M=Momentum, A.F=Activation Function, 

CW=Connectivity Weights, M.S.E=Mean Square Error 
 
 
 
 
 

 
 

Network 

 
 

Architecture 

 
 

L.R  

 
 

M  

A.F for 
Hidden 
Layers 

A.F 
for 

Output 
Layer 

 
No. of 
C.W 

 

 
No. of 

Iteration 
 

 
 

M.S.E 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 
N1 6-10-1 0.005 0.55 Linear Linear 81 50000 0.084973 
N2 6-15-1 0.03 0.6 Sig(x) Sig(x) 121 10000 0.012291 
N3 6-20-1 0.04 0.6 Sig(x) Sig(x) 161 10000 0.011574 
N4 6-25-1 0.06 0.6 Tanh(x) Tanh(x) 201 10000 0.013439 
N5 6-30-1 0.1 0.7 Sig(x) Sig(x) 241 10000 0.009273 
N6 6-35-1 0.08 0.7 Sig(x) Sig(x) 281 10000 0.008824 
N7 6-40-1 0.08 0.65 Tanh(x) Tanh(x) 321 10000 0.011354 
N8 6-45-1 0.1 0.7 Sig(x) Sig(x) 361 10000 0.009073 
N9 6-50-1 0.08 0.7 Sig(x) Tanh(x) 401 30000 0.008745 
N10 6-60-1 0.1 0.7 Sig(x) Sig(x) 481 20000 0.008276 
N11 6-5-5-1 0.06 0.65 Tanh(x) Sig(x) 71 10000 0.009846 
N12 6-6-6-1 0.04 0.6 Sig(x) Sig(x) 101 10000 0.009248 
N13 6-8-8-1 0.08 0.7 Sig(x) Sig(x) 137 10000 0.009073 
N14 6-10-10-1 0.05 0.7 Sig(x) Sig(x) 181 10000 0.007692 
N15 6-12-6-1 0.08 0.65 Sig(x) Sig(x) 169 10000 0.007531 
N16 6-12-12-1 0.08 0.7 Sig(x) Sig(x) 253 15000 0.007339 
N17 6-15-15-1 0.06 0.7 Sig(x) Sig(x) 361 25000 0.007103 
N18 6-16-8-1 0.01 0.5 Tanh(x) Tanh(x) 257 30000 0.008247 
N19 6-8-16-1 0.04 0.6 Tanh(x) Sig(x) 217 20000 0.007648 
N20 6-10-5-1 0.06 0.65 Sig(x) Sig(x) 131 10000 0.007987 
N21 6-14-7-1 0.08 0.7 Sig(x) Sig(x) 211 10000 0.007029 
N22 6-18-18-1 0.08 0.7 Sig(x) Sig(x) 487 30000 0.006893 
N23 6-20-20-1 0.06 0.7 Sig(x) Sig(x) 581 40000 0.006732 
N24 6-25-25-1 0.1 0.75 Sig(x) Sig(x) 851 100000 0.006624 
N25 6-30-15-1 0.02 0.5 Sig(x) Sig(x) 691 70000 0.006849 
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Table 3: Comparison between learning parameters and MSE 
 

Learning Rate Momentum Rate MSE Iterations 
0.01 0.45 0.007451 50000 
0.03 0.55 0.007492 40000 
0.04 0.60 0.007431 35000 
0.06 0.65 0.007758 35000 
0.08 0.70 0.007963 20000 
0.10 0.75 0.009124 10000 
0.20 0.80 0.0112749 5000 
0.30 0.75 
0.40 0.70 
0.50 0.70 

 
Unstable 

 
 

Table 4: Influence type of activation function on value of network error in training 
 

Run Method 
1 2 3 4 5 6 7 8 9 10 Mean 

Sigmoid .035 .039 .159 .033 .053 .039 .029 .035 .030 .031 .0483 
Tanh(x) .028 .062 .032 .040 .036 .034 .030 .048 .346 .181 .0838 
linear .066 .085 .252 .183 .102 .061 .264 .058 .067 .145 .1287 
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Figure 1: Initial Neural Network Structure 
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Figure 2: Final Architecture of the Developed Artificial Neural Network 
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Figure3: Variation of MSE versus Rates of Learning 
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Figure 4: Variation of MSE versus Rates of Momentum 
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Figure5: Comparison of Experimental and Predicted data in Training Process 
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Figure 6: Comparison of Experimental and Predicted data in Testing Process 
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Figure 7 Comparison of Experimental and Predicted data in Validation Process 

 
 

0
0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

0.045
0.05

0.055
0.06

0 2000 4000 6000 8000 10000

Number of Iterations

M
S

E

Training Sets Validation Sets Testing Sets
 

 
Figure 8: Comparison of MSE of the Training, Testing and Validation Sets versus the Number of Iterations 

 
 

 


